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EXECUTIVE SUMMARY  

In this study, a literature search was conducted on predicting the virgin aggregate temperature 
required to dry and heat reclaimed asphalt pavement/recycled asphalt shingles (RAP/RAS) in a hot-
mix asphalt (HMA) production plant. The study also included an assessment of HMA plant operation 
and production procedures, application of thermodynamics and heat transfer principles, measurement 
of moisture content in virgin aggregates and in RAP and RAS, and recording of virgin aggregate 
temperatures in a drum plant.  

It was found in the literature review that virgin aggregate temperatures have been predicted for drying 
and heating RAP in batch plants, but the study in question did not consider virgin aggregate moisture 
content.  For drum plants, however, previous research noted the use of empirical equations and 
numerical analysis for predicting the virgin aggregate temperature. In addition, it was found that one 
attempt had been made to install temperature probes inside the drum to measure the temperature of 
virgin aggregate. However, the physical parameters of the materials were not considered in the 
empirical equations, although that study considered the proportions of RAP and virgin aggregates in 
its analysis. Moreover, numerical analysis and field studies have included the use of thermodynamic 
principles, but those studies did not include HMA mixes with RAP. 

In the current study, thermodynamics and heat transfer principles are used to predict virgin aggregate 
temperatures necessary to dry and heat RAP. Different proportions of virgin aggregates (50% to 90%) 
and RAP (10% to 50%) in the HMA mix were used in the calculation. The moisture content of virgin 
aggregate varied from 1% to 5%, and the moisture content of RAP varied from 1% to 5%. One 
example is presented for 0.5 in. virgin aggregates and RAP size and another for 0.25 in. virgin 
aggregates and RAP size. It was observed that for 0.5 in. virgin aggregates and RAP, the virgin 
aggregates become superheated (more than 1000°F) when the moisture contents for both the virgin 
aggregates and RAP are in the range of 3% to 5% and the material proportions are in the range of 
30% to 50%. For the 0.25 in. virgin aggregates and RAP, the virgin aggregates become very hot 
(more than 500°F) when the RAP percentages in the HMA mix are in the range of 40% to 50%.  

The plant moisture content data indicate that virgin coarse aggregates hold a lower amount of 
moisture compared with virgin fine aggregates. However, a comparison of same-size virgin 
aggregates and RAP shows that RAP contains a higher amount of moisture. The reason might be that 
the binder coating of RAP holds moisture better than do virgin aggregates and because the aged 
binder coating moisture does not evaporate quickly in the open air. Also, it was found that RAS 
contains a higher amount of moisture compared with RAP of the same size. Generally, moisture 
content in virgin aggregates, RAP, and RAS increases after precipitation. However, many other 
factors—such as evaporation, temperature, and humidity—affect the moisture content of virgin 
aggregates and RAP/RAS.  

Performance of HMA in the field might depend on the superheated virgin aggregate temperature and 
high RAP proportion in the mix. However, more field studies are needed. The limited literature review 
shows the importance of additional study about the temperature of virgin and recycled materials inside 
a drum plant. A future study should take a multi-disciplinary approach, include collection of extensive 
plant data, and include both computational and numerical modeling as well as laboratory 
investigations.  
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CHAPTER 1: INTRODUCTION  

1.1 BACKGROUND AND MOTIVATION 
Materials such as reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) have been 
used in hot-mix asphalt (HMA) for many years to lower consumption of virgin materials to reduce 
costs and for environmental reasons. RAP has been used in HMA pavement construction for more 
than 40 years; RAS has been used for fewer than 10 years nationally and for fewer than 5 years in 
Illinois (Ozer et al. 2012). The Illinois Department of Transportation (IDOT) used approximately 0.6 
million tons of RAP in 2001 and 1.7 million tons of recycled materials in 2010 (Al-Qadi et al. 2007; 
Ozer et al. 2012). However, in HMA mixes, RAP replaced a higher percentage than RAS in virgin 
materials. In many states, more than 25% RAP is used in HMA pavement, while less than 10% RAS 
is used (Mannan et al. 2014). In addition, the use of RAS in HMA mix is not commonly practiced in all 
states.  

RAP/RAS materials are coated either partially or fully by aged and oxidized binder. This coating can 
be extracted and analyzed and a performance grade (PG) of the binder can be determined. These 
aged and oxidized binders, as well as recycled aggregates or recycled shingles, are mixed with virgin 
aggregate and virgin binder to produce HMA mix. Virgin binder and aggregate costs are reduced by 
partial replacement with RAP/RAS materials.  

HMA production for mixes that contain RAP/RAS material differs from production of HMA that 
contains only virgin material. Generally, virgin aggregates are dried and heated inside a dryer at an 
elevated temperature. Drying is necessary to reduce moisture in the virgin aggregate, while heating is 
necessary to achieve good bonding between the aggregates and the binder. After the virgin 
aggregates have been heated, RAP/RAS materials are added separately inside the mixer and mixed 
with the heated virgin aggregate. Heated virgin aggregates are used to dry and heat the RAP/RAS 
materials.  

It is critical that moisture be removed from the RAP/RAS materials before they are mixed with the 
asphalt binder because moisture causes adhesive damage (separation of aggregate from the binder) 
and cohesive damage (disintegration within the binder) in HMA (Hossain 2013). Moisture that remains 
in the virgin aggregates, the RAP, or the RAS is called residual moisture (Transportation Research 
Board 2015).  

In addition, it is necessary to heat the aged and oxidized asphalt binder coating on the RAP/RAS 
materials so that they blend properly with the virgin asphalt binder and produce a homogeneous mix. 
Virgin asphalt binder is added to the mix of virgin aggregate and RAP/RAS to achieve the desired 
volumetrics of the HMA mix design. HMA is kept heated at a specific temperature in a storage silo 
until it is transported to the construction location.  

RAP/RAS materials are not directly dried and heated inside the dryer/heater at an elevated 
temperature while the HMA is produced; if RAP/RAS materials are directly heated, then the binder 
coating will burn off and evaporate from the surface of the recycled material, producing emissions 
from the mixing plant. If any burned-up binder coating is left on the RAP/RAS materials, the properties 
of the binder will be significantly changed, resulting in a poorly performing HMA mix. It is necessary, 
however, to activate the aged and oxidized binder coating by heating it in conjunction with the virgin 
aggregates.  

To prevent the aged and oxidized asphalt binders from being burned, the virgin aggregates are first 
dried and heated to a particular temperature, and then RAP/RAS is added to the production chamber. 
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that cause greenhouse effects. In addition, because of increased fuel price, production costs increase 
when using additional fuel to dry and heat RAP/RAS materials. 

Recently, IDOT officials have become aware of the use of higher virgin aggregate temperatures 
(approximately 700°F) in HMA production plants. The use of higher temperatures for virgin 
aggregates has also been observed by several HMA production contractors, plant operators, and 
paving crews. In addition, IDOT field crews have observed significantly high HMA mix temperatures 
(over 400°F) while the HMA mix was under the paver. Because of excessive rainfall in 2015, it is 
possible that the RAP/RAS materials contain a higher amount of moisture than usual. Furthermore, if 
the ambient temperature of RAP/RAS is very low in winter, then the recycled materials might need 
additional heat to dry and activate their binder coatings. Consequently, it is possible that virgin 
aggregates are being overheated inside the drum—and these superheated virgin aggregates might be 
burning the RAP/RAS coating.  

Very few studies have been done on energy consumption in connection with heating virgin aggregate 
with RAP materials or of the energy required to evaporate moisture from the RAP (Frederick and 
Tario 2009; Gillespie 2012). In addition, only a limited study has been conducted on the 
thermodynamic process that takes place inside a dryer/heater to heat virgin aggregates (Hobbs 
2009). No study has been done on the thermodynamics of moisture evaporation of RAP/RAS and 
virgin aggregates, nor has there been any study on energy consumption from the use of RAS 
materials to produce HMA mix.  

Accordingly, an overall understanding of the thermodynamic processes of heat transfer from virgin 
aggregate to RAP/RAS materials and energy consumption in a mix plant is necessary to reduce 
energy loss and emissions in a mix plant and to maintain a temperature below that which would cause 
significant damage to the virgin and recycled asphalt binders.  

1.2 RESEARCH OBJECTIVE 
The objectives of this project are as follows: 

 Conduct a comprehensive literature review on thermodynamics, with special emphasis on 
heat transfer phenomena between RAP/RAS materials with virgin aggregates when 
moisture is present in the recycled materials. 

 Evaluate the HMA production process specifically in regard to energy use, energy loss, 
and emissions when mixing RAP/RAS with virgin aggregates in the presence of variable 
amounts of moisture. 

 Determine the virgin aggregate temperature necessary to produce various blends of RAP, 
RAS, and RAP/RAS mixtures with moisture contents ranging from 0% to 20%.  

1.3 RESEARCH APPROACH 
Thermodynamics is a vast subject that covers how heat is transferred, how much work is done, and 
the final state of a system. Heat transfer involves how heat is transferred, at what rate heat is 
transferred into a material, and the temperature distribution inside a body. The research approach to 
accomplish the objectives of the study included the following tasks: 

 Study the fundamental principles of thermodynamics and heat transfer and how they apply 
to virgin and recycled materials. Analyze thermodynamic properties such as thermal 
conductivity and the heat transfer coefficient of virgin aggregates and recycled materials, 
as well as the energy required to heat up virgin aggregates, to heat up RAP/RAS materials 
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in conjunction with the hot virgin aggregates, and to evaporate moisture from the 
aggregate.  

 Conduct a comprehensive literature review of published books, journal papers, conference 
proceedings, National Cooperative Highway Research Program reports, Transportation 
Research Record journals, National Asphalt Pavement Association publications, National 
Center for Asphalt Technology reports, and other resources to understand the heat 
transfer phenomena in aggregates or similar materials. Parameters and typical values 
required to model heat transfer in aggregates will be collected from the published literature.  

 Use generalized heat transfer models that consider the conduction, convection, and 
radiation processes of heat transfer of virgin aggregates and RAP/RAS materials. Use the 
developed model to calculate energy consumption and temperature required to evaporate 
moisture from virgin aggregates and RAP/RAS. 

 Collect virgin aggregates, RAP, and RAS from a local HMA production plant to measure 
moisture content of the materials. Record moisture content data for 3 months and use that 
information to observe the moisture content variations in the plant’s aggregates in a regular 
production season.  

 Visit a drum mix plant to observe the HMA mix process. Collect HMA production data 
related to type and gradation of virgin aggregates, percentage of RAP/RAS used in the 
mix, moisture content in virgin aggregates, moisture content in RAP/RAS, heating time of 
virgin aggregates, mixing time of virgin aggregates with RAP/RAS and binder, virgin 
aggregate temperature, mixing temperature, etc. These data will provide additional 
information on heating of virgin aggregates to remove moisture from the RAP/RAS 
materials and subsequent mixing with the virgin binder.  

1.4 REPORT ORGANIZATION 
The scope of the research is to understand the energy use and temperature required to evaporate 
moisture from virgin aggregates and RAP/RAS by studying thermodynamics and heat transfer 
processes between the aggregates inside a dryer/heater, specifically at a drum plant.  

Chapters are organized as follows: 

Chapter 2 presents a summary of the HMA plants and effects on plant production related to the 
presence of moisture in virgin aggregates and recycled materials, especially RAP. Historical and 
current studies on energy use at drum and batch plants are summarized. In addition, an overview of 
the different types of plants is provided.  

Chapter 3 presents the details of a comprehensive study on thermodynamics and heat transfer 
principles of materials. Thermodynamics equations are presented, and their application to heating 
aggregates in a drum plants is explained.  

Chapter 4 explains the prediction of virgin aggregate temperature by using values taken from the 
literature, as well as by using thermodynamics equations. A step-by-step computational process is 
shown, and two examples are provided.  

Chapter 5 presents the moisture content test results of virgin aggregates and RAP and RAS materials 
collected from a local HMA production plant. Several other field data taken from the plants in other 
IDOT districts and fields are also documented in this chapter.  
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Chapter 6 presents the temperature data collected from a HMA drum plant, and a sample calculation 
to predict virgin aggregate temperature of the plant using the thermodynamics equations is provided. 

Chapter 7 discusses the results and provides a recommendation for potential future studies.  
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2.4 FACTORS AFFECTING HMA PLANT PERFORMANCE 
Many factors affect HMA plant performance. Among them are the following: 

 size of plant 
 moisture content in virgin aggregates and in RAP/RAS  
 amount of RAP/RAS in the mix 
 HMA mix temperature 
 exhaust gas temperature 
 baghouse temperature 

One study showed that virgin aggregate moisture content and production capacity have the biggest 
influence on energy consumption (Grabowski and Janowski 2010). Every 1% change in total 
composite moisture represents a 10% change in fuel requirements. That study found that a 1% 
increase in moisture per ton of aggregate can result in an additional 0.6 L of fuel being consumed to 
evaporate it. At 6% moisture, 4 L of fuel are required to dry 1 ton of aggregate. Once the aggregate is 
dry, heating it to 302°F consumes 3 L of fuel, meaning that more energy is used in drying the 
aggregate than in heating it (Grabowski and Janowski 2010). For most dryers, the maximum new-
aggregate temperature upon discharge should be about 500°F to avoid damaging the dryer (drum 
warp is a possibility) and to keep from removing internal moisture in the aggregate (Hot-Mix Asphalt 
Paving Handbook 2000).  

2.4.1 Effects of Drum Size  
Table 2.1 shows the production rate variation in tons per hour (TPH) for a parallel-flow drum plant at 
various drum diameters and percentages of moisture removal from the aggregates (Brock n.d.). The 
following analysis assumes 50% excess combustion air in the drum, 10% leakage through RAP/RAS 
inlet and discharge chute and seals, 110 lb/ft3 material weight, 4% moisture in RAP, and 5.5% liquid 
asphalt. CFH stands for cubic feet of gases processed per hour, which is equal to the air intake 
through the drum. It can be seen that, as expected, the larger the drum diameter, the more hot gas 
passes through, which provides better drying of the virgin aggregates.  

Table 2.1 Parallel-Flow Mixture Production Rates (TPH) 

Drum 
Diameter 

(ft) 

Process 
Gases 

Through 
Drum 
(CFH) 

Percentage of Moisture Removed and Gallons of Fuel per Ton Total 
Exhaust 
Through 
System 
(CFH) 

3 4 5 6 7 8 9 10 11 12 

1.43 1.60 1.80 2.05 2.23 2.45 2.67 2.90 3.14 3.38 

6 28000 253 211 179 153 137 123 111 100 91 83 33600 

7 38500 338 285 243 213 187 166 150 137 127 115 46200 

8 50000 443 380 317 274 243 216 195 179 164 150 60000 

9 63500 564 469 399 348 308 275 248 226 207 190 76200 

10 78500 696 574 496 432 380 339 306 280 255 234 94200 
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Table 2.2 shows the production rate variation in TPH for a counter-flow mixture at various drum 
diameters and percentages of moisture removal from the aggregates (Brock n.d.). Comparing Table 
2.2 with Table 2.1, it can be seen that for any particular drum diameter and percentage of moisture 
removed, the production rate is higher and the consumption of fuel is lower in the counter-flow drum 
compared with the parallel-flow drum. The following analysis assumes 50% excess combustion air in 
drum, 20% leakage through seals, the discharge chute, and tower fugitive air; 110 lb/ft3 material 
weight; 4% moisture in RAP; and 5.5% liquid asphalt.  

Table 2.2 Counter-Flow Mixture Production Rates (TPH) 

Drum 
Diameter 

(ft) 

Process 
Gases 

Through 
Drum 
(CFH) 

Percentage of Moisture Removed and Gallons of Fuel per Ton Total 
Exhaust 
Through 
System 
(CFH) 

3 4 5 6 7 8 9 10 11 12 

1.37 1.56 1.76 1.95 2.17 2.38 2.50 2.82 3.04 3.27 

6 28000 260 220 187 162 143 129 115 105 97 89 33600 

7 38500 355 300 255 223 198 176 159 145 132 123 46200 

8 50000 467 390 334 288 257 230 207 188 172 158 60000 

9 63500 590 493 423 369 325 291 265 238 219 200 76200 

10 78500 730 610 523 465 403 360 325 295 270 299 94200 

 

Table 2.3 shows the production rate variation in TPH for a double-barrel drum mixture at various drum 
diameters and percentages of moisture removal from the aggregates (Brock n.d.). Comparing Table 
2.3 with Tables 2.1 and 2.2, it can be seen that for a particular drum diameter and percentage of 
moisture removed, the production rate in a double barrel is generally higher and has a lower 
consumption of fuel. The following analysis assumes 50% excess combustion air in drum, 10% 
leakage through RAP inlet and discharge chute and seals, 110 lb/ft3 material weight, 4% moisture, 
5.5% liquid asphalt. Comparing all three tables, double-barrel drum is the most efficient in terms of 
fuel use, moisture removal, and production rate.  

Table 2.3 Double-Barrel Drum Mixture Production Rates (TPH) 

Drum 
Diameter 

(ft) 

Process 
Gases 

Through 
Drum 
(CFH) 

Percentage of Moisture Removed and Gallons of Fuel per Ton Total 
Exhaust 
Through 
System 
(CFH) 

3 4 5 6 7 8 9 10 11 12 

1.32 1.51 1.71 1.90 2.10 2.30 2.51 2.72 2.94 3.17 

6 28000 287 239 205 178 157 140 127 115 105 97 33800 

7 38500 394 329 281 245 216 193 174 158 145 133 42350 

8 50000 512 427 365 318 280 251 226 205 188 173 60000 

9 63500 651 542 463 403 356 318 287 261 239 219 69850 

10 78500 804 670 573 499 440 393 355 322 295 271 86350 
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Table 2.4 shows drum capacity for moisture removal considering both drum diameter and length 
(Kennedy et al. 1986). As expected, as the length of the drum increases, the moisture removal 
capacity increases as well.  

Table 2.4 Nominal Drum Mix Capacities  

Drum Diameter  
and Length (ft) 

Capacity (TPH) for Surface Moisture Removed (%) 

2 3 4 5 6 7 8 9 10 

5 × 22 178 142 116 100 84 79 74 63 58 

6 × 24 278 220 178 158 137 121 116 100 89 

7 ×  30 420 336 273 236 205 184 163 147 137 

8 ×  32 541 430 352 305 263 236 210 194 173 

9 ×  36 719 578 478 410 357 315 284 257 236 

10 ×  40 956 761 630 541 473 420 378 341 315 

 
 

2.4.2 Effect of RAP Moisture and Exit Temperature  
Table 2.5 shows the virgin aggregate temperature needed to dry and heat RAP when RAP moisture 
content varies from 0% to 5% (Recycling Hot Mix Asphalt Pavements 1996). The analysis was done 
for a batch plant. It should be noted that no literature was found on virgin aggregate temperature 
required related to RAP moisture content in a drum plant. The result assumes a 20°F loss between 
the dryer and pug mill. The required temperature of the virgin aggregates is dependent on the amount 
of RAP and its moisture content (Hot-Mix Asphalt Paving Handbook 2000). Also, it should be noted 
that virgin aggregate moisture content and gradation of virgin aggregates were unknown in the 
analysis shown in Table 2.5. As expected, virgin aggregates become hotter as RAP moisture content 
increases. In addition, when the RAP percentage increases in the mix, more heat is needed from the 
virgin aggregates to remove moisture from the RAP.  
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Table 2.5 Virgin Aggregate Temperatures Required to Dry and Heat RAP in  
a Batch Plant (Recycling Hot Mix Asphalt Pavements 1996) 

Reclaimed Material Moisture Content (%)

Recycled Mix Discharge Temperature 

220°F 240°F 260°F 280°F 

A. Ratio: 10% RAP / 90% Aggregate 

0 250 280 305 325 

1 260 290 310 335 

2 270 295 315 340 

3 280 300 325 345 

4 285 305 330 350 

5 290 315 335 360 

B. Ratio: 20% RAP / 80% Aggregate 

0 280 310 335 360 

1 295 320 350 375 

2 310 335 360 385 

3 325 350 375 400 

4 340 365 390 415 

5 355 380 405 430 

C. Ratio: 30% RAP / 70% Aggregate 

0 315 345 375 405 

1 335 365 395 425 

2 360 390 420 450 

3 385 415 445 475 

4 410 440 470 500 

5 435 465 495 525 

D. Ratio: 40% RAP / 60% Aggregate 

0 355 390 425 460 

1 390 425 460 495 

2 425 460 495 530 

3 470 500 535 570 

4 500 535 570 610 

5 545 575 610 645 

E. Ratio: 50% RAP / 50% Aggregate 

0 410 455 495 540 

1 465 515 550 590 

2 520 580 605 650 

3 575 620 660 705 

4 640 680 715 760 

5 690 735 775 820 
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Another study examined similar moisture content variations in RAP at different exit temperatures (Hot 
Mix Asphalt Recycling 2007). That study was conducted in a batch plant and assumed 10°F loss from 
dryer to pug mill and a 70°F outside air temperature. A similar trend in increased virgin aggregate 
temperature was observed. However, in the field, the exit temperature can be very high compared 
with the theoretical value. An IDOT field crew observed that the exit temperature reached more than 
400°F. This high exit temperature indicates that the virgin aggregate becomes very hot and might 
burn the aged binder and the virgin binder, resulting in a low-quality mix.  

Table 2.6 Virgin Aggregate Temperature Required to Dry and  
Heat RAP in a Batch Plant (Hot Mix Asphalt Recycling 2007) 

 
Reclaimed Material Moisture Content (%)

Recycled Mix Discharge Temperature 

240°F 260°F 280°F 300°F 

10%RAP/ 
90% 

Aggregate 

0 269 291 313 335 

1 274 296 318 340 

2 279 301 323 345 

3 284 306 328 350 

4 289 311 333 355 

5 294 316 338 360 

20% RAP/ 
80% 

Aggregate 

0 292 317 342 367 

1 303 328 353 378 

2 314 339 364 389 

3 325 350 375 400 

4 336 361 386 411 

5 347 372 397 422 

30% RAP/ 
70% 

Aggregate 

0 324 352 330 408 

1 343 371 599 427 

2 362 390 418 446 

3 381 409 437 465 

4 400 428 456 484 

5 419 447 475 503 

40% RAP/ 
60% 

Aggregate 

0 366 397 430 463 

1 424 426 459 492 

2 453 455 488 521 

3 482 484 517 550 

4 511 513 546 579 

5 540 542 575 608 

50% RAP/ 
50% 

Aggregate 

0 420 460 500 540 

1 464 504 544 588 

2 508 548 588 628 

3 552 592 632 672 

4 596 636 676 716 

5 640 680 720 760 
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To reach the desired output temperature of the HMA, the virgin aggregates are often superheated 
before being mixed with recycled asphalt materials (RAP and RAS) and new asphalt binder. During 
superheating, the virgin aggregates can reach temperatures between 500°F and 600°F. Although the 
recycled asphalt materials are not directly exposed to these hot temperatures, it is estimated that 90% 
of the recycled materials are heated by the virgin aggregates, while the remainder is heated from the 
hot gases inside the plant (Daniel and Hall 2014)  

Table 2.7 shows results from a study by Frederick and Tario (2009) on measurement of virgin aggregate 
temperature with RAP content varying from 10% to 50%. For extreme case—50% virgin aggregate and 
50% RAP mixture—virgin aggregate temperature increased 44°F for each 1% increase in RAP moisture 
content.  

Table 2.7 Effects of RAP Percentage and Moisture Content, and Discharge  
Temperature of Virgin Aggregate (Frederick and Tario 2009) 

RAP (%)  
Increase in Aggregate Temperature (°F) 

For Same Moisture Content and 
Discharge Temperature 

Per 1% Increase 
Moisture in RAP 

Per 20°F Increase in  
Discharge Temperature 

10 29 5 22 

20 52 11 25 

30 84 19 28 

40 156 29 N/A 

50 180 44 40 

 

 

2.4.3 Effects on Baghouse 
If the baghouse is subjected to temperatures above 440°F for extended periods of time, the synthetic 
fiber bags can char, disintegrate, and burn; therefore, the temperature of the exhaust gases entering 
the baghouse should not exceed 400°F. To prevent this, a temperature sensor and automatic 
shutdown devices are installed in the ductwork upstream of the baghouse (Hot-Mix Asphalt Paving 
Handbook 2000).  

It follows that if the moisture content of virgin aggregates and RAP/RAS is increased, then a higher 
temperature would be required to remove the moisture, which would cause an increased baghouse 
temperature. In addition, when the RAP percentage increases and the virgin aggregate percentage 
decreases inside the drum, the number of veils decreases and most of the hot air exits to the 
baghouse, causing the aforementioned damage.  
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2.4.4 Effects on Exhaust Fan  
An exhaust fan is used to transfer hot air from the drum to the baghouse. The capacity of the exhaust 
fan is affected by the moisture content of the virgin aggregates and RAP/RAS materials. Table 2.8 
shows the exhaust fan capacity for batch and drum plants (Young 2007). As shown in Table 2.8, a 
higher-capacity fan is required while moisture content in the aggregate is increased. Also, as 
expected, the drum mixture is efficient compared with the b atch facility when the heat required to 
remove moisture is considered.  

Table 2.8 Effect of Aggregate Moisture on Exhaust  
Fan and Heat Demand Requirements (Young 2007) 

 

Batch Facility 
255°F at Exhaust Fan 

275°F at Dryer Exit 

Drum Mixer 
290°F at Exhaust Fan 

310°F at Drum Exit 
Aggregate 
Moisture 

(% Removed) 
Heat Required 

(1000 Btu/t) 

Fan Volume Required  
(Cubic Ft/Min/TPH Dry 

Aggregate) 

Heat 
Required 

(1000 Btu/t) 

Fan Volume Required  
(Cubic Ft/Min/TPH  

of HMA mix) 
1 160.0 60.2 154.1 60.6 

2 187.9 79.2 181.2 79.7 

3 215.8 98.1 208.4 98.8 

4 243.7 117.1 235.5 117.9 

5 271.6 136.1 262.7 137.0 

6 299.5 155.0 289.8 156.0 

7 327.4 174.0 317.0 175.1 

8 355.3 192.9 344.1 194.2 

9 383.2 211.9 371.3 213.3 

10 411.1 230.9 398.4 232.4 

11 439.1 249.8 425.6 251.5 

12 467.0 268.8 452.7 270.6 

13 494.9 287.8 479.9 289.7 

14 522.8 306.7 507.0 308.8 

15 550.7 325.7 534.2 327.9 
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2.4.5 Effects on Fuel Consumption 
Virgin aggregate temperature increases because of an increase in moisture content in the RAP/RAS 
material. The plant requires more energy to increase the temperature, which leads to higher fuel 
consumption in the plant. Table 2.9 shows energy use as it relates to an increase in moisture content 
and mix temperature. In another study, it was shown that a 40°F reduction in exit gas temperatures 
will result in an approximately 4% reduction in fuel consumption (Young 2007). That study also found 
that raising the mix temperature 15°F to 20°F above the target design temperature can result in 4% to 
5% energy expenditure.  

Table 2.9 Fuel Consumption (gal/t) Versus Moisture  
at Various Stack Temperatures (Young 2007) 

% Moisture 400°F 350°F 300°F 250°F 200°F

0 0.97 0.95 0.93 0.91 0.89 

1 1.18 1.15 1.12 1.09 1.06 

2 1.38 1.35 1.32 1.29 1.26 

3 1.59 1.55 1.51 1.47 1.43 

4 1.79 1.75 1.71 1.67 1.63 

5 2 1.95 1.9 1.85 1.8 

6 2.21 2.16 2.11 2.06 2.01 

7 2.43 2.37 2.31 2.25 2.19 

8 2.63 2.57 2.51 2.45 2.39 

9 2.84 2.77 2.7 2.63 2.57 

10 3.04 2.97 2.9 2.83 2.76 

11 3.25 3.17 3.09 3.01 2.93 

12 3.45 3.37 3.29 3.21 3.13 

2.5 SUMMARY  
Drum plants are preferred by HMA producers and contractors for large paving projects because it is 
efficient in removing moisture from virgin aggregates, RAP, and RAS, and the continuous production 
provides efficient and faster paving construction.  

The temperature required to dry virgin aggregate and RAP/RAS material in a drum plant has not been 
studied. For batch plants, however, two studies determined the virgin aggregate temperature required 
to dry and heat RAP to remove moisture (Recycling Hot Mix Asphalt Pavements 1996; Hot Mix 
Asphalt Recycling 2007). However, these studies did not consider the moisture in virgin aggregates or 
the size of virgin aggregates and RAP/RAS. Moreover, it is not known whether that study considered 
thermal properties of virgin aggregates and RAP/RAS materials. However, the batch plant study did 
show that virgin aggregates become superheated when the RAP percentage increases to more than 
40% and RAP moisture content increases to a range between 4% and 5%. No studies have been 
done on drying RAS in conjunction with virgin aggregates and RAP. Also, it is not known how 
superheated virgin aggregate damages the aged binder coating of RAP/RAS and virgin binder.  

Now is an ideal time to study the energy consumption and heat required to dry RAP and RAS in a 
drum plant because the use of RAP and RAS in paving projects is increasing and drum plants are 
becoming more popular among paving contractors. In addition, fuel costs are increasing, which 
means HMA mixing costs will increase as well if virgin aggregates must be superheated to dry RAP 
and RAS.  
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3.3 PREVIOUS STUDIES ON DETERMINING ENERGY AND TEMPERATURE IN A DRUM PLANT  

3.3.1 Empirical Approach 
A study was conducted to determine the temperature required in a drum plant (Frederick and Tario 
2009). The equation is as follows: 

ΔT ൌ ሺെ0.0516  0.0143 ܲ  0.00034 ௗܶ௦ሻ ோܲ
ଶ  ሺ2.1954  0.1023 ܲ  0.00177 ௗܶ௦ሻ ோܲ

 2.8 ܲ  1.0635 ௗܶ௦ െ 254.124 

where ΔT is the increase in temperature of virgin aggregates caused by RAP (°F), ܲ is the 
moisture content (%), ௗܶ௦ is the discharge temperature (°F), and ோܲ is the RAP content (%). Total 
energy to heat aggregates with moisture can be determined as follows: 

ΔH ൌ
ܯ ܲሺ212 െ ܶሻܥ௪௧

100

ܯ ܲܪܮ

100

ܯ ܲሺ ௗܶ௦ െ 212ሻܥ௩

100
 

ܯሺ ௗܶ௦ െ ܶሻܥ 

where ܯ is the mass of aggregate (lb), ܲ is the moisture content (%), ܶ is the ambient 
temperature (°F), ܥ௪௧ is the specific heat of water (1.0 Btu/lb/°F), LH is latent heat to evaporate 
water (970 Btu/lb), ܥ௩ is the specific heat of vapor (0.5 Btu/lb/°F), and ܥ is the specific heat of 
aggregate (0.22 Btu/lb/°F). It should be noted that the above equations do not consider the physical 
properties of the materials, such as size and shape of aggregates.  

3.3.2 Field Measurement 
Le Guen et al. (2013) conducted a study in which they placed a temperature probe inside a parallel-
flow drum and measured the temperature. The research was solely to analyze convective heat 
transfer in aggregates. The study did not include RAP or RAS in the drum. The researchers measured 
gas temperature (Tg) with seven temperature probes on a rod placed along the longitudinal axis of the 
drum in order to measure gas temperature. Figure 3.2 shows the location of temperature probes 
inside a drum.  

In that study, the temperature of the aggregate mix leaving the drum was measured using a 
pyrometer. Fuel use was recorded electronically over a wireless connection every half hour. The 
temperature sensors were protected against granular flow by means of a steel semi-shell; to avoid 
heat transfer conduction, the sensors were insulated from the support. Because the temperature 
ranged from 400°K to 1500°K, K-thermocouples were used. The aggregate temperature (Ta) was 
measured by four inner-wall probes inserted in the drum during a pause in the manufacturing process. 
Two flaps were machined in order to capture several samples of aggregates so that their temperature 
and humidity could be measured.  
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ܳௗ ൌ
ሺܣ݇ ܶ௧ െ ܶௗሻݐ

݀
 

where Qcond is the energy required for conduction, k is the thermal conductivity of the material, A is the 
cross-sectional area, Thot is the higher temperature, Tcold is the cooler temperature, t is the heat 
transfer time, and d is the thickness of the material.  

3.4.2 Convection  
Convection is the transfer of energy or heat between a solid and the adjacent fluid in motion. In the 
current study, heat transfer occurred between virgin aggregates and RAP, and in the air inside the 
drum—primarily the virgin aggregate with air. The equation is as follows: 

ܳ௩ ൌ ሺܣܪ ܶ௧ െ ܶௗሻ 

where Qconv is the energy required for convection, Hc is the heat transfer coefficient, A is the cross-
sectional area, Thot is the higher temperature, and Tcold is the cooler temperature.  

3.4.3 Radiation  
Radiation is the transfer of energy or heat by electromagnetic waves. In the current study, the burner 
flame causes radiation inside the drum. The equation is as follows:  

ܳௗ ൌ ሺܶସ௧ܣߪ െ ܶସௗሻ 

where Qrad is the energy required for radiation, σ is the Stefan–Boltzmann constant (0.119E-10 
Btu/hr/in2 /°R4 or 1.712E-9 BRU/hr/ft2/°F4), A is the cross-sectional area, Thot is the higher temperature, 
and Tcold is the cooler temperature.  

3.5 SUMMARY  
Previous research predicted virgin aggregate temperature using empirical equations and numerical 
analysis. In addition, one attempt has been made to install temperature probes inside a drum to 
measure virgin aggregate temperature. However, physical parameters of the materials were not 
considered in the empirical equations, although RAP was not included in the previous analysis. 
Numerical analysis and field temperature measurement has included thermodynamic principles but 
did not include RAP.  

Thermodynamic equations can be used to predict virgin aggregate temperature given the moisture 
content of virgin aggregates and recycled materials, incorporating physical and thermal properties of 
the materials.  
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CHAPTER 4: DETERMINING VIRGIN AGGREGATE TEMPERATURE  

4.1 INTRODUCTION  
This chapter provides step-by-step calculations for predicting virgin aggregate temperatures required 
for drying and heating RAP. Two analyses are presented: one based on values found in the literature 
for a batch plant and another by applying thermodynamics and heat transfer principles for a drum 
plant.  

The publication Recycling Hot Mix Asphalt Pavements (1996) provides the virgin aggregate 
temperatures required to heat and dry RAP materials containing different moisture percentages. 
However, the moisture content of RAP varied from 1% to 5%. In addition, the exit temperatures 
addressed in the literature were limited to 280°F or 300°F.  

IDOT has observed higher moisture content in RAP and RAS materials and wanted to determine the 
virgin aggregate temperature required to remove moisture from RAP. The following analysis 
addressed RAP only.  

4.2 BATCH PLANT 
In this exercise, the literature value given for a batch plant was taken as the base value. The data 
shown in Table 2.5 were used as a base value to predict virgin aggregate temperature for RAP 
moisture content ranging from 1% to 20% and exit temperatures ranging from 220°F to 400°F.  

As a first step, the data shown in Table 2.5 were plotted in MATLAB, and then an equation was used 
to optimize the data. Five equations were established for five combinations of RAP and virgin 
aggregates. These equations are given below.  

For 10% RAP and 90% virgin aggregates,  

ሺԬሻ	݁ݎݑݐܽݎ݁݉݁ܶ	݁ݐܽ݃݁ݎ݃݃ܣ	݊݅݃ݎܸ݅ ൌ െ16.07  ݔ1.229  ݕ13.43 െ  ݕݔ0.02643

For 20% RAP and 80% virgin aggregates,  

ሺԬሻ	݁ݎݑݐܽݎ݁݉݁ܶ	݁ݐܽ݃݁ݎ݃݃ܣ	݊݅݃ݎܸ݅ ൌ െ11.43  ݔ1.327  ݕ19.07 െ  ݕݔ0.01929

For 30% RAP and 70% virgin aggregates,  

ሺԬሻ	݁ݎݑݐܽݎ݁݉݁ܶ	݁ݐܽ݃݁ݎ݃݃ܣ	݊݅݃ݎܸ݅ ൌ െ17.38  ݔ1.5  ݕ24.29  ሺ1.841݁ െ 08ሻݕݔ 

For 40% RAP and 60% virgin aggregates,  

ሺԬሻ	݁ݎݑݐܽݎ݁݉݁ܶ	݁ݐܽ݃݁ݎ݃݃ܣ	݊݅݃ݎܸ݅ ൌ െ32.74  ݔ1.754  ݕ38.93 െ  ݕݔ0.006429

For 50% RAP and 50% virgin aggregates,  

ሺԬሻ	݁ݎݑݐܽݎ݁݉݁ܶ	݁ݐܽ݃݁ݎ݃݃ܣ	݊݅݃ݎܸ݅ ൌ െ50.83  ݔ2.102  ݕ57 െ  ݕݔ0.004286

In each equation, x is the RAP moisture content and y is the exit temperature.  

After the equations were developed for each combination of RAP and virgin aggregates, virgin 
aggregate temperatures were determined for RAP with moisture content ranging from 0% to 20% (x-
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where the heat of vaporization is equal to 2260000 J/kg.  

4.3.2 Energy Required to Remove Moisture from RAP/RAS 
Energy required to remove moisture from RAP/RAS (Q2) is determined in two steps: step 1 is the 
energy required to increase temperature from the ambient condition to 212°F (Q2-1), and step 2 is the 
energy required to evaporate water at 212°F (Q2-2). 

ܳଶିଵ ൌ ݎ݁ݐܹܽ	݂	ݏݏܽܯ ൈ ݎ݁ݐܹܽ	݂	ݐܽ݁ܪ	݂ܿ݅݅ܿ݁ܵ ൈ ሺ ଵܶ െ ܶሻ 

where the specific heat of water is equal to 4.186 kJ/kg/°C, T1 is 212°F, and T0 is the ambient or 
atmospheric temperature.  

ܳଶିଶ ൌ ݎ݁ݐܹܽ	݂	ݏݏܽܯ ൈ  ݊݅ݐܽݖ݅ݎܸܽ	݂	ݐܽ݁ܪ

where the heat of vaporization is equal to 2260000 J/kg.  

4.3.3 Energy Required to Achieve Exit Temperature  
Calculating the energy required to achieve the exit temperature (Q3) is performed in two steps. Step 1 
is the energy required for additional heating of virgin aggregates to achieve the exit temperature after 
partial equilibrium of heat transfer (Q3-1). If the virgin aggregate temperature is higher than the binder 
and mixing temperatures, then the virgin aggregates transfer heat to the binder, and partial 
equilibrium of the exit temperature is achieved. If the virgin aggregate temperature is lower than the 
binder and mixing temperatures then additional energy is required for heating the virgin aggregates to 
achieve the mixing temperature (Q3-2). (Heat loss is not considered in this analysis because heat loss 
varies from one plant from another. However, a significant amount of heat loss could take place inside 
the drum.) 

For example, after the virgin aggregates have been dried and heated, if their temperature (250°F) is 
lower than the binder temperature (280°F) and mix temperature (350°F), then additional heat (energy) 
is provided by the virgin aggregates to achieve the mix temperature. In that case, the mix temperature 
can be controlled and easily maintained. On the other hand, after the virgin aggregates have been 
dried and heated, if their temperature (500°F) is higher than the binder temperature (280°F) and mix 
temperature (350°F), then no additional heat (energy) is provided by the virgin aggregates to achieve 
the mix temperature. In that case, the mix temperature is difficult to control and the HMA mix might 
become overheated. 

RAP/RAS are at ambient temperature. Binder is supplied in the drum at a specific temperature, which 
depends on the type of PG grade binder. Only the virgin aggregates are heated to achieve the exit 
temperature. Virgin aggregate temperature increases or decreases depending on the state of the 
materials and the physical properties of the drum. Q1, Q2, and Q3 are delivered in the virgin 
aggregates by means of heat transfer (conduction, convection, and radiation) from the burner.  

For the following examples, Q3 is not determined— it is theorized that heat transfer and temperature 
equilibrium are more complex in the outer drum because binder temperature is involved. However, 
future studies can incorporate Q3 in this analysis.  

4.3.4 Example of Determining Virgin Aggregate Drying and Heating Temperature  
The average temperature to dry and heat virgin aggregate is determined by using thermodynamic 
heat transfer equations. Only one size of coarse aggregate and RAP is considered in the example. 
The limitations of this analysis are that (1) no energy loss is considered, and (2) a simplified heat 
distribution in the virgin aggregates by means of conduction, convection, and radiation is assumed. 
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Numerical simulations such as computational fluid dynamics (CFD) and discrete element method 
(DEM) modeling can be used to create a more detailed calculation of heat distribution. Numerical 
modeling is out of the scope for the current project, but it is recommended for future studies.  

4.3.4.1 Analysis Step One 
A total of 100 tons of aggregate is used for the analysis. Different proportions of virgin aggregates 
(90% to 50%) and RAP (10% to 50%) are considered. Likewise, different percentages of moisture 
content in virgin aggregates (1% to 5%) and RAP (1% to 5%) are considered.  

4.3.4.2 Analysis Step Two  
Q1-1 and Q1-2 are calculated for virgin aggregates, and Q2-1 and Q2-2 are calculated for RAP using the 
equations previously shown.  

4.3.4.3 Analysis Step Three 
Physical properties of the drum were obtained from the available literature: rotational speed of the 
drum at 7 rpm, drum radius at 5 ft (1.52 m), drum length at 20 ft (6.1 m), and drying and heating time 
for virgin aggregates at 30 sec.  

4.3.4.4 Analysis Step Four 
The percentages of conduction, convection, and radiation are calculated as follows: 

“One virgin aggregate” is defined as rotating on the drum wall as well as being in contact with 
neighboring aggregates, climbing on the flight (conduction), traveling half the perimeter of the drum, 
and then dropping freely (convection) while it reaches at the top of the drum. The amount of time the 
“one virgin aggregate” is in contact with the drum wall, as well as with the other aggregates (time of 
conduction) and the time required to free fall (time of convection) when it reaches the top of the drum 
are calculated from the drum dimension.  

It is assumed that “time of radiation” is 5% of the total time; the remaining 95% is “time of conduction” 
and “time of convection.” Those three times are considered the percentage contribution of heat 
transfer in virgin aggregates.  

It should be noted that a previous study found that 90% of the recycled materials were heated by the 
virgin aggregates (conduction) and 10% heated from the hot gases (convection) inside the plant 
(Daniel and Hall n.d.). However, there was no mention of the percentage of radiation in the drum or of 
the amount of conduction, convention, and radiation for drying and heating the virgin aggregates only.  

4.3.4.5 Analysis Step Five  
Determine heat transfer coefficient (HC) for the convective heat transfer equation:  

ܪ ൌ
݇ ൈ ݑܰ
݀

 

where k is the thermal conductivity (Btu/hr/ft2/°F), and d is the diameter of the aggregates. In this 
example, k is 2.808 (for silica) and d is 0.5 in. (assumed the same size for virgin aggregate and RAP). 
Nu is the Nusselt number (no unit) and can be determined using the following equation:  

ݑܰ ൌ 2  ሺ4.5 ൈ 10ିହߙܴ݁ଵ.଼ሻ 

where α is the thermal diffusivity [k/(density * specific heat); the density of silica is considered 2.648 
(gm/cm3) and the specific heat of silica is 0.5649 Btu/lb/°F], n is 3.5 (generally experimentally 
determined), and Re is the Reynolds number (1500 is assumed for turbulence flow).  
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CHAPTER 5: LABORATORY TESTS ON PLANT MATERIALS  

5.1 INTRODUCTION  
This chapter summarizes the results of laboratory moisture content tests conducted in cooperation 
with River City Supply, an HMA drum plant contractor in Peoria, Illinois. The lab test was conducted in 
the IDOT District 4 materials laboratory in Peoria.  

Initially, the moisture content for plant virgin aggregates, RAP, and RAS was unknown; therefore, a 
RAP moisture content in the range of 0% to 20% was assumed based on IDOT field crew experience 
on selected projects. The analysis presented in Chapter 4 was based on that assumed value. Later, a 
better and more practical understanding of the moisture content of the plant’s materials was gained by  
collecting virgin aggregates, RAP, and RAS from a plant to determine moisture content. In addition, 
weather data were collected from the local weather station. The weather data were collected for three 
consecutive days before the materials were collected from the plant. The weather data collected were 
cumulative rainfall, maximum relative humidity (RH), minimum temperature, and maximum 
temperature. All weather data were collected at hourly intervals. The plant materials were collected on 
the following dates and times.  

Table 5.1 Plant Material Collection Dates and Times 

Date (2015) Time 
16 April  ~8:00 a.m. 
22 April  ~8:00 a.m. 
28 April  ~8:00 a.m. 
7 May  ~8:00 a.m. 
13 May  ~8:00 a.m. 
19 May  ~1:00 p.m. 
27 May  ~7:15 a.m. 
6 June  ~9:00 a.m. 
11 June ~8:00 a.m. 
19 June   ~8:30 a.m.

5.2 TEST PROCEDURE  
The moisture content of the aggregates was determined by means of Illinois Modified Test Procedure 
255 (Total Evaporable Moisture Content of Aggregates by Drying). The apparatus used in the test 
were a balance, a ventilated oven, and a container. The test sample needs to be dried to constant 
mass in an oven specifically designed for drying, set at and capable of maintaining a uniform 
temperature of 230°F ± 9°F. Constant mass is defined as the sample mass at which there has not 
been more than a 0.5 gram mass loss during 1 hour of drying (which should be verified occasionally). 
After the test sample has been dried to constant mass and cooled down to room temperature, the 
mass of the sample is determined to the nearest 1 gram for coarse aggregates and to the nearest 0.1 
gram for fine aggregates. This procedure provides the total dry mass of the test sample. RAP samples 
should be air-dried to a constant mass. Aggregate moisture content was determined by the following 
formula: 

ܲ ൌ
100ሺܱܵܯ െ ሻܯܦܶ

ܯܦܶ
 

where P is the aggregate moisture content expressed as a percentage, OSM is the original sample 
mass (grams), and TDM is the dried sample mass (grams).  
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5.3 LABORATORY TEST AND WEATHER DATA 
The following tables present the summary of moisture data. The one-day weather data is averaged for 
the maximum RH, minimum temperature, and maximum temperature. The rainfall shown is 
cumulative data for 3 days.  

The mineral properties (limestone or sandstone) of the aggregates were unknown. Because thermal 
properties of aggregates depend on their mineral composition, it is recommended to that information 
on mineral composition of aggregates be recorded as part of a future study.  

As shown in Table 5.1(a), the moisture content in coarse aggregates (CA) ranges from 1.74% to 
3.57%. The CA supplied by Tri-Con contains a higher amount of moisture. The moisture content in 
fine aggregates (FA) ranges from 4.58% to 5.49%. For –3/8 RAP, the moisture content is 4.99% and 
is 6.43% for –3/8 RAS. The negative sign refers that RAP or RAS is less than 3/8 in. Although 
moisture content is compared between 3/8 in. CA and RAP, the RAP contains 39.77% more moisture. 
This indicates that aged binder coating helps prevent moisture evaporation from RAP.  

Table 5.1(a) Plant Material Moisture Content and Weather Data (16 April 2015, ~8:00 a.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content  

% 

Cumulative Rainfall for 72 hr 

Max RH  
(24 hr) 

Min Avg 
Temp 
(°F) 

(24 hr) 

Max 
Avg 

Temp 
(°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 1.74% 

0 0 0 78% 58.75 69.25 

CA13 (1/2 in.), Tri-Con 3.23% 

CA16 (3/8 in.), Lafarge 2.76% 

CA16 (3/8 in.), Tri-Con 3.57% 

FA01 (Sieve no. #4), Hurley 4.58% 

FA01 (Sieve no. #4), Lowery 4.74% 

FA04 (Sieve no. #16), PS&G 3.38% 

FA20 (Sieve no. #4), Lafarge 4.94% 

FA20 (Sieve no. #4), Pia Conc 5.49% 

–3/8 FRAP 4.99% 

–3/8 RAS 6.43% 

 

As shown in Table 5.1(b), the moisture content in CA ranges from 0.37% to 2.94%. The CA supplied 
by Tri-Con contains a higher amount of moisture. The moisture content in FA ranges from 4.46% to 
4.78%. For –3/8 RAP, the moisture content is 5.19% and is 7.98% for –3/8 RAS. Although moisture 
content is compared between 3/8 in. CA and RAP, the RAP contains 76.53% more moisture. It should 
be noted that rainfall was recorded while collecting these materials, and it is assumed that some FA, 
RAP, and RAS moisture content increased as a result of the rainfall. However, CA moisture content 
decreased from the previous week’s data.  
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Table 5.1(b) Plant Material Moisture Content and Weather Data (22 April 2015, ~8:00 a.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content  

% 

Cumulative Rainfall for 72 hr 

Max RH  
(24 hr) 

Min Avg 
Temp 
(°F) 

(24 hr) 

Max 
Avg 

Temp 
(°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 0.37% 

0.39 0.11 0.39 67% 44.75 56 

CA13 (1/2 in.), Tri-Con 2.79% 

CA16 (3/8 in.), Lafarge 2.51% 

CA16 (3/8 in.), Tri-Con 2.94% 

FA01 (Sieve no. #4), Hurley 4.46% 

FA01 (Sieve no. #4), Lowery 4.44% 

FA04 (Sieve no. #16), PS&G 4.39% 

FA20 (Sieve no. #4), Lafarge 4.57% 

FA20 (Sieve no. #4), Pia Conc 4.78% 

–3/8 FRAP 5.19% 

–3/8 RAS 7.98% 

As shown in Table 5.1(c), the moisture content in CA ranges from 0.33% to 3.20%. The moisture 
content in FA ranges from 4.19% to 5.08%. For –3/8 RAP the moisture content is 5.45% and is 8.46% 
for -3/8 RAS. Although moisture content is compared between 3/8 in. CA and RAP, the RAP 
contained 70.31% more moisture. Excess rainfall increased the moisture content in RAP and RAS 
from the previous week.  

Table 5.1(c) Plant Material Moisture Content and Weather Data (28 April 2015, ~8:00 a.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content  

% 

Cumulative Rainfall for 72 hr 

Max RH  
(24 hr) 

Min 
Avg 

Temp 
(°F) 

(24 hr) 

Max 
Avg 

Temp 
(°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 0.33% 

0.86 0.42 0.87 82% 47.5 59.75 

CA13 (1/2 in.), Tri-Con 2.66% 

CA16 (3/8 in.), Lafarge 1.30% 

CA16 (3/8 in.), Tri-Con 3.20% 

FA01 (Sieve no. #4), Hurley 4.19% 

FA01 (Sieve no. #4), Lowery 4.35% 

FA04 (Sieve no. #16), PS&G 2.26% 

FA20 (Sieve no. #4), Lafarge 4.19% 

FA20 (Sieve no. #4), Pia Conc 5.08% 

–3/8 FRAP 5.45% 

–3/8 RAS 8.46% 
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As shown in Table 5.1(d), the moisture content in CA ranges from 1.64% to 3.72%. The moisture content 
in FA ranges from 4.59% to 5.21%. For –3/8 RAP, the moisture content is 4.05% and is 7.54% for –3/8 
RAS. It should be noted that less rainfall was recorded (compared with the previous week) while collecting 
these materials. Less rainfall reduced the moisture content in RAP and RAS from the previous week.  

Table 5.1(d) Plant Material Moisture Content and Weather Data (7 May 2015, ~8:00 a.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content  

% 

Cumulative Rainfall for 72 hr 

Max RH  
(24 hr) 

Min 
Avg 

Temp 
(°F)  

(24 hr) 

Max 
Avg 

Temp 
(°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 1.64% 

0.13 0.13 0.13 66% 69.6 81.2 

CA13 (1/2 in.), Tri-Con 1.10% 

CA16 (3/8 in.), Lafarge 2.25% 

CA16 (3/8 in.), Tri-Con 3.72% 

FA01 (Sieve no. #4), Hurley 4.59% 

FA01 (Sieve no. #4), Lowery 4.12% 

FA04 (Sieve no. #16), PS&G 3.37% 

FA20 (Sieve no. #4), Lafarge 4.23% 

FA20 (Sieve no. #4), Pia Conc 5.21% 

–3/8 FRAP 4.05% 

–3/8 RAS 7.54% 

As shown in Table 5.1(e), the moisture content in CA ranges from 0.29% to 4.11%. The moisture 
content in FA ranges from 4.91% to 5.30%. For –3/8 RAP, the moisture content is 3.96% and is 
8.74% for –3/8 RAS.  

Table 5.1(e) Plant Material Moisture Content and Weather Data (13 May 2015, ~8:00 a.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content  % 

Cumulative Rainfall for 72 hr 
Max RH  
(24 hr) 

Min Avg 
Temp 
(°F)  

(24 hr) 

Max Avg 
Temp 
(°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 0.29% 

0.81 0.48 0.69 86% 50.8 58.6 

CA13 (1/2 in.), Tri-Con 1.55% 

CA16 (3/8 in.), Lafarge 1.03% 

CA16 (3/8 in.), Tri-Con 4.11% 

FA01 (Sieve no. #4), Hurley 4.91% 

FA01 (Sieve no. #4), Lowery 4.70% 

FA04 (Sieve no. #16), PS&G 5.23% 

FA20 (Sieve no. #4), Lafarge 3.98% 

FA20 (Sieve no. #4), Pia Conc 5.30% 

–3/8 FRAP 3.96% 

–3/8 RAS 8.74% 
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As shown in Table 5.1(f), the moisture content in CA ranges from 0.13% to 1.13%. The moisture 
content in FA ranges from 3.5% to 4.61%. For –3/8 RAP, the moisture content is 5.27% and is 7.77% 
for –3/8 RAS.  

Table 5.1(f) Plant Material Moisture Content and Weather Data (19 May 2015, ~1:00 p.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content   

% 

Cumulative Rainfall for 72 hr 

Max RH  
(24 hr) 

Min Avg 
Temp 
(°F)  

(24 hr) 

Max 
Avg 

Temp 
(°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 0.13% 

0.1 0.02 0.1 79% 56.5 65.75 

CA13 (1/2 in.), Tri-Con 1.78% 

CA16 (3/8 in.), Lafarge 2.46% 

CA16 (3/8 in.), Tri-Con 1.13% 

FA01 (Sieve no. #4), Hurley 3.50% 

FA01 (Sieve no. #4), Lowery 3.87% 

FA04 (Sieve no. #16), PS&G 3.59% 

FA20 (Sieve no. #4), Lafarge 4.30% 

FA20 (Sieve no. #4), Pia Conc 4.61% 

–3/8 FRAP 5.27% 

–3/8 RAS 7.77% 

As shown in Table 5.1(g), the moisture content in CA ranges from 1.24% to 2.48%. The moisture 
content in FA ranges from 4.52% to 5.92%. For –3/8 RAP, the moisture content is 5.37% and is 
6.22% for –3/8 RAS.  

Table 5.1(g) Plant Material Moisture Content and Weather Data (27 May 2015, ~7:15 a.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content  

% 

Cumulative Rainfall for 72 hr 

Max RH  
(24 hr) 

Min 
Avg 

Temp 
(°F)  

(24 hr) 

Max 
Avg 

Temp 
(°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 2.48% 

0.95 0.52 0.95 87% 67.75 76 

CA13 (1/2 in.), Tri-Con 2.18% 

CA16 (3/8 in.), Lafarge 3.25% 

CA16 (3/8 in.), Tri-Con 1.24% 

FA01 (Sieve no. #4), Hurley 4.52% 

FA01 (Sieve no. #4), Lowery 4.46% 

FA04 (Sieve no. #16), PS&G 2.45% 

FA20 (Sieve no. #4), Lafarge 4.99% 

FA20 (Sieve no. #4), Pia Conc 5.92% 

–3/8 FRAP 5.37% 

–3/8 RAS 6.22% 
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As shown in Table 5.1(h), the moisture content in CA ranges from 0.33% to 0.62%. The moisture 
content in FA ranges from 5.03% to 5.62%. For –3/8 RAP, the moisture content is 5.01% and is 
4.54% for –3/8 RAS.  

Table 5.1(h) Plant Material Moisture Content and Weather Data (2 June 2015, ~9:00 a.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content  

 % 

Cumulative Rainfall for 72 hr 

Max RH  
(24 hr) 

Min 
Avg 

Temp 
(°F)  

(24 hr) 

Max 
Avg 

Temp 
(°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 0.33% 

0.18 0.05 0.19 87% 55.75 64.25 

CA13 (1/2 in.), Tri-Con 2.52% 

CA16 (3/8 in.), Lafarge 3.45% 

CA16 (3/8 in.), Tri-Con 0.62% 

FA01 (Sieve no. #4), Hurley 5.03% 

FA01 (Sieve no. #4), Lowery 4.16% 

FA04 (Sieve no. #16), PS&G 3.02% 

FA20 (Sieve no. #4), Lafarge 3.39% 

FA20 (Sieve no. #4), Pia Conc 5.62% 

–3/8 FRAP 5.01% 

–3/8 RAS 4.54% 

 

As shown in Table 5.1(i), the moisture content in CA ranges from 2.07% to 3.28%. The moisture 
content in FA ranges from 5.18% to 7.59%. For –3/8 RAP, the moisture content is 3.36% and is 
6.65% for –3/8 RAS.  

Table 5.1(i) Plant Material Moisture Content and Weather Data (11 June 2015, ~8:00 a.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content 

% 

Cumulative Rainfall for 72 hr 
Max 
RH  
(24 
hr) 

Min Avg 
Temp (°F)  

(24 hr) 

Max Avg 
Temp (°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 2.07% 

1.6 0.71 1.6 87% 74.25 85.25 

CA13 (1/2 in.), Tri-Con 3.19% 

CA16 (3/8 in.), Lafarge 4.73% 

CA16 (3/8 in.), Tri-Con 3.28% 

FA01 (Sieve no. #4), Hurley 5.18% 

FA01 (Sieve no. #4), Lowery 4.44% 

FA04 (Sieve no. #16), PS&G 4.94% 

FA20 (Sieve no. #4), Lafarge 6.40% 

FA20 (Sieve no. #4), Pia Conc 7.59% 

–3/8 FRAP 3.36% 

–3/8 RAS 6.65% 
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As shown in Table 5.1(j), the moisture content in CA ranges from 2.48% to 2.69%. The moisture 
content in FA ranges from 4.98% to 6.54%. For –3/8 RAP, the moisture content is 5.60% and is 
9.04% for –3/8 RAS.  

Table 5.1(j) Plant Material Moisture Content and Weather Data (19 June 2015, ~8:30 a.m.) 

Aggregate Type (NMAS), 
Supplier 

Moisture 
Content % 

Cumulative Rainfall for 72 hr 

Max RH  
(24 hr) 

Min 
Avg 

Temp 
(°F)  

(24 hr) 

Max 
Avg 

Temp 
(°F) 

(24 hr) 1 hr 3 hr 6 hr 

CA11 (3/4 in.), Lafarge 2.48% 

0.17 0.02 1.03 88% 70.25 78.5 

CA13 (1/2 in.), Tri-Con 2.84% 

CA16 (3/8 in.), Lafarge 4.13% 

CA16 (3/8 in.), Tri-Con 2.69% 

FA01 (Sieve no. #4), Hurley 4.98% 

FA01 (Sieve no. #4), Lowery 3.63% 

FA04 (Sieve no. #16), PS&G 4.25% 

FA20 (Sieve no. #4), Lafarge 6.60% 

FA20 (Sieve no. #4), Pia Conc 6.54% 

–3/8 FRAP 5.60% 

–3/8 RAS 9.04% 

 

5.4 OTHER MOISTURE DATA 
Other aggregate moisture data collected by IDOT officials in several districts are given in the following 
tables.  

Table 5.2 RAP and RAS Moisture Data Collected by the District 2 Materials Lab 

Date 
Sampled Producer 

Material 
Code 

Sample 
Weight (g) 

Dry 
Weight (g) 

Moisture 
Content (%) 

7/9/2015 6452-02 017CM16 1676.4 1601.3 4.7 

7/20/2015 700-16 017CM3804 1892.2 1836 3.1 

7/20/2015 700-16 017FM0400 1006.9 967.3 4.1 

 

Table 5.3 RAP Moisture Data Collected by IDOT Officials 

HMA Producer/Supplier RAP Moisture Content 

W.L. Miller, Hamilton, IL (1318-02) 5.0% 

UCM, Beardstown, IL (5641-05) 4.6% 

R.W. Dunteman, Pana, IL (547-05) 4.1% 
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Table 5.4 RAP and RAS Moisture Data  
Collected by the District 1 Materials Lab 

Materials Type Moisture Content 

RAS 10.4% 

RAP 4.2% 

RAP 4.5% 

RAP 5.2% 

 

Table 5.5 RAP Moisture Data Collected  
by IDOT Industry Representative 

Aggregate Type (NMAS) Moisture Content 

CA11 (3/4 in.) 2.3% 

CA16 (3/8 in.) 2.9% 

CA20 (3/8 in.) 1.0% 

–3/8 FRAP 3.4% 

+3/8 FRAP 1.4% 

 

5.5 SUMMARY  
The plant moisture content data indicates that virgin coarse aggregates hold a lower amount of 
moisture compared with virgin fine aggregates. However, in comparing same-size virgin aggregates 
and RAP, it was found that RAP contained a higher amount of moisture. The reason might be that the 
binder coating on RAP holds moisture better than virgin aggregates do, and the aged binder coating 
moisture does not evaporate as quickly when it is open to the air. Also, RAS contains a higher amount 
of moisture compared with RAP of the same size. Generally, moisture content in aggregates 
increases after precipitation. However, many other factors—such as evaporation, temperature, and 
humidity—affect the moisture content of virgin aggregates and RAP/RAS.  
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CHAPTER 6: HMA PLANT VISIT AND TEMPERATURE DATA 
COLLECTION  

6.1 INTRODUCTION 
This chapter describes the temperature data collection and analysis of a drum plant. The data were 
collected from Gallagher Asphalt in Joliet, Illinois, near Chicago and a driving distance of 
approximately 2 hr and 15 min from Peoria, Illinois. The data were collected on 24 June 2015. 
Generally, the plant begins operating early in the morning (approximately 6:00 a.m.), and production 
starts at around 7:00 a.m. The data were collected for approximately 1 hr and 45 min.  

6.2 HMA DRUM PLANT VISIT  
Gallagher Asphalt has a double-barrel counter-flow drum plant. The drum plant is shown in Figure 
6.1(a). The double-barrel drum is shown in Figure 6.1(b). The green box on the right end is the burner 
and the silver cover is the outer barrel part of the drum plant. The plant has seven virgin aggregate 
bins and two recycled aggregate bins. One recycled aggregate bin is used for RAP and other is used 
for RAS. The virgin aggregate bins are showing in Fig 6.1(c) and the recycled bins are shown in 
Figure 6.1(e).  

This double-barrel drum plant has a temperature-measuring unit that records virgin aggregate 
temperature while it gets inside the outer drum after drying and heating and before mixing with 
RAP/RAS. There are many other temperatures and parameters recorded automatically by the plant 
controlling unit. A plant operator or foreman controls and monitors all the measurement taken by the 
control unit.  

The double-barrel drum capacity is 500 t/hr Inner radius of the drum is 10 ft, drum length is 49.8 ft, 
drum rotation was counted as 6 rpm for that particular mix, and the RAP entrance from the top of the 
drum and the distance of this entrance is 44 ft away the entrance of the virgin aggregates. RAP 
entrance is shown in Figure 6.3(d).  
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The fine aggregate gradation is given in Tables 6.1 and 6.2. FM02 and FM20 were used in the mix. 
Thirty-three percent FM02 and 67% FM20 were used in the HMA mix. FM02 contained 5.1% 
moisture, and FM20 contained 6.3% moisture. The HMA mix contained 31% RAP and 4.75% RAS. 
The RAP had 6.9% moisture content, and the RAS had 15.2% moisture content. The RAS moisture 
content recorded in the Joliet plant was higher than the moisture content recorded in the Peoria plant. 
However, the FM02, FM20, and RAP moisture content in the Joliet plant fell within the range of the 
data collected from the Peoria plant.  

Table 6.1 Gradation of FM02 Aggregate  

Sieve Size % Passing 

3/8 in 100 

#4 (4.75 mm) 99.6 

#8 (2.36 mm) 85.5 

#16 (1.18 mm) 63 

#30 (0.6 mm) 38.5 

#50 (0.3 mm) 10 

#100 (0.15 mm) 3.3 

#200 (0.075 mm) 2.5 
  

Table 6.2 Gradation of FM20 Aggregate  

Sieve Size % Passing 

3/8 in 100 

#4 (4.75 mm) 99.7 

#8 (2.36 mm) 84.9 

#16 (1.18 mm) 56.1 

#30 (0.6 mm) 38.8 

#50 (0.3 mm) 25.7 

#100 (0.15 mm) 13.6 

#200 (0.075 mm) 5.5 

In the inner drum, the heating time of the fine aggregates was 140 sec. The HMA mix contained 7.8% 
PG 70-28 polymer-modified binder. In the plant, the binder temperature varied from 278°F to 289°F. In 
the outer drum, the aggregate, RAP, RAS, and binder mixing time was 40 sec.  

The drum was pre-heated at 500°F for more than 30 min before virgin aggregates were fed into it. 
Generally, the amount of pre-heating time depends on the moisture content of virgin aggregates, 
RAP, and RAS. The temperature inside the drum was monitored before the virgin aggregates were 
fed into it. As the virgin aggregates were fed into the drum, the temperature of the aggregates in the 
drum was continuously monitored by a foreman, and the mix temperature was recorded at the exit 
before the mix was sent to the silo.  
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Figure 6.6 Temperature profile of virgin aggregate and mix temperature. 

6.5 VERIFICATION OF VIRGIN AGGREGATE TEMPERATURE  
The thermodynamic equations used in Chapter 4 were used to validate temperature in this double-
barrel drum plant, following these steps: 

1. The total amount of virgin aggregates drying and heating in the inner drum for 140 sec was 
determined, which was 1.98 tons. Of that amount, 33% was FM02 and 67% was FM20.  

2. Using the aggregate gradation chart, the total amount of aggregate corresponding to each size 
was determined.  

3. The amount of moisture in each size of aggregate was determined.  

4. The energy required (Q1-1) to evaporate water from each aggregate size was determined. The 
ambient temperature for the virgin aggregate and RAP was 65.3°F. In addition, for each 
aggregate size, the energy required (Q1-2) to evaporate water was determined.  

5. The amounts of RAP and RAS required to mix with 1.98 tons of virgin aggregate were 
determined. It was calculated that 1.09 tons of RAP and 0.17 ton of RAS was mixed with the 
virgin aggregates in the outer barrel.  

6. The moisture in the RAP and RAS were determined.  

7. The energy required (Q2-1) to evaporate water from the RAP and RAS were determined. In 
addition, for RAP and RAS, the energy required (Q1-2) to evaporate water was determined.  
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8. The conduction, convection, and radiation percentages in the drum were determined. It was 
assumed that 5% was radiation. Conduction and convection was found to be 82% 13%, 
respectively.  

9. Thermal conductivity for each aggregate size was determined.  

10. Thot conduction, Thot convection, and Thot radiation for each size of virgin aggregate were 
determined, and average temperature was calculated.  

Tables 6.3 and 6.4 show the virgin aggregate temperature calculated using thermodynamic equations. 
It can be seen that the largest aggregate for both gradations is 0.187 and the temperature is close to 
the temperature (560°F to 615°F) measured in the drum plant.  

Table 6.3 Virgin Aggregate Temperature for FM02 

Sieve Size  
(Aggregate Size) 

THot  
Conduction  

(°F) 

THot 
Convection 

(°F) 

THot  
Radiation  

(°F) 

THot  
Average  

(°F) 

#4 (0.187 in.) 285 69 1404 586 

#8 (0.0937 in.) 67 65 524 219 

#16 (0.0469 in.) 66 65 407 179 

#30 (0.0234 in.) 65 65 338 156 

#50 (0.0117 in.) 65 65 278 136 

#100 (0.0059 in.) 65 65 304 145 

#200 (0.0029 in.) 65 65 418 183 

Mineral Filler (0.0028 in.) 65 65 315 149 

 

Table 6.4 Virgin Aggregate Temperature for FM20 

Sieve Size 
(Aggregate Size) 

THot 
Conduction 

(°F) 

THot 
Convection 

(°F) 

THot  
Radiation 

(°F) 

THot  
Average 

(°F) 

#4 (0.187 in.) 211 68 1267 515 

#8 (0.0937 in.) 67 65 476 203 

#16 (0.0469 in.) 66 65 374 168 

#30 (0.0234 in.) 65 65 330 154 

#50 (0.0117 in.) 65 65 288 139 

#100 (0.0059 in.) 65 65 245 125 

#200 (0.0029 in.) 65 65 218 116 

Mineral Filler (0.0028 in.) 65 65 231 121 
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6.6 SUMMARY  
The thermodynamic equations can be used to predict the virgin aggregate temperature required to dry 
and heat RAP and RAS. However, there are some assumptions in this analysis that require more 
study. Heat loss is one of the significant parameters to include in the future studies. Moreover, heat 
distribution by means of conduction, convection, and radiation are not clearly understood and warrant 
additional study.   
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS  

7.1 INTRODUCTION  
The objectives of this project were to (1) conduct a comprehensive literature review on 
thermodynamics, with special emphasis on heat transfer phenomena between RAP/RAS materials 
with virgin aggregates while moisture is present in the recycled materials; (2) evaluate the HMA 
production process specifically with regard to energy use, energy loss, and emission during mixing 
RAP/RAS with virgin aggregates with the presence of variable amount of moisture; and (3) determine 
the virgin aggregate temperature necessary to produce various blends of RAP, RAS, and RAP/RAS 
mixtures with moisture contents ranging from 0% to 20%.  

The following conclusions are drawn on the basis of the literature review, on limited laboratory tests 
and field investigations, and on calculations made with several assumptions.  

7.2 CONCLUSIONS  

7.2.1 HMA Plants  
A drum plant is preferred by HMA producers and contractors for large paving work because it is 
efficient in removing moisture from virgin aggregates, RAP, and RAS, and the continuous production 
provides efficient and faster paving construction. For drum plants, the temperature required to dry 
virgin aggregate and RAP/RAS material has not been studied.  

For batch plants, however, two studies determined the virgin aggregate temperature required to dry 
RAP only (Recycling Hot Mix Asphalt Pavements 1996; Hot Mix Asphalt Recycling 2007). However, 
those studies did not consider the moisture in virgin aggregates or the size of virgin aggregate and 
RAP. Also it is not known whether those studies considered thermal properties of the virgin 
aggregates and RAP materials. The batch plant studies did show that virgin aggregates become 
superheated when the RAP percentage increases more than 40% and RAP moisture content 
increases between 4% and 5%.   

No study was found in the literature on the topic of drying RAS in conjunction with virgin aggregates 
and RAP.  

In addition, it is not known how superheated virgin aggregate damages the aged binder coating of 
RAP/RAS and virgin binder.  

7.2.2 Thermodynamics and Heat Transfer  
Previous research predicted virgin aggregate temperature using empirical equations and numerical 
analysis (Frederick and Tario 2009; Hobbs 2009). One attempt was made to install temperature 
probes inside a drum to measure virgin aggregate temperature (Le Guen et al. 2013). However, the 
physical parameters of the materials were not considered in the empirical equations, although that 
study did include RAP in the analysis. Moreover, numerical analysis and field temperature 
measurements have used thermodynamic principles, but those studies did not include HMA mixes 
with RAP.  

7.2.3 Predicting Virgin Aggregate Temperature 
Thermodynamics and heat transfer principles are used to predict the virgin aggregate temperature 
required for drying and heating RAP. Different proportions of virgin aggregates and RAP in an HMA 
mix were used in the calculations. Virgin aggregate moisture content varied from 1% to 5%, and RAP 
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moisture content varied from 1% to 5%. One example was provided for 0.5 in. virgin aggregates and 
RAP and another for 0.25 in. virgin aggregates and RAP.  

It was observed that for 0.5 in. virgin aggregates and RAP, the virgin aggregates became 
superheated (more than 1000°F) as the moisture content for both the virgin aggregate and RAP 
moisture content increased. This superheated temperature was observed for both mid and high RAP 
percentages (30% to 50%). On the other hand, for the smaller virgin aggregates and RAP (0.25 in.), 
the virgin aggregates became very hot (more than 500°F) as the RAP percentage increased to a 
range of 40% to 50% in the HMA mix.  

7.2.4 Measuring Moisture Content of Plant Material  
The plant moisture content data indicate that virgin coarse aggregates hold a lower amount of 
moisture compared with virgin fine aggregates. However, in comparing same-size virgin aggregates 
and RAP, it was found that RAP contained higher amounts of moisture. The reason might be that the 
binder coating on RAP holds moisture better than virgin aggregates do, and the aged binder coating 
moisture does not evaporate as quickly when it is open to the air. Also, RAS contains a higher amount 
of moisture compared with RAP of the same size. Generally, moisture content in aggregates 
increased after precipitation. However, many other factors—such as evaporation, temperature, and 
humidity—affect the moisture content of virgin aggregates and RAP/RAS.  

7.2.5 Measuring Virgin Aggregate Temperature 
Virgin aggregate temperature can be measured in a plant that has temperature-measuring unit inside 
the drum, but not many plants have the unit. The temperature-measuring unit comes with the drum as 
an accessory, or it can be installed afterward. Some contractors prefer installing the unit for quality 
control of the mix. However, other contractors use the exit temperature and baghouse temperature for 
that purpose.  

A significant heat loss through the drum wall was not considered in this analysis, nor was pre-heating. 

7.3 RECOMMENDATIONS FOR FUTURE STUDIES  

7.3.1 Multi-Disciplinary Study 
Studies of thermodynamics and heat transfer in materials and structures are usually conducted by 
mechanical and industrial engineers. Therefore, a multi-disciplinary collaboration is recommended for 
a future study. Drying and heating materials in an HMA plant is a complex operation, and a multi-
disciplinary study will help provide an understand of the broader relationship between aggregate 
heating and drying in conjunction with virgin and recycled materials.  

7.3.2 Extensive Data Collection  
Many types of drum plants are available. Operation of plants varies based on RAP feeding, virgin 
aggregate feeding, and other material considerations. Other factors that have an effect on achieving a 
properly heated mix are age of the plant, operator experience, and lack of temperature-measuring 
units, which requires operators to rely on judgment when heating and drying virgin aggregates. 

Accordingly, extensive data collection is necessary to understand plant operation when a 
temperature-measuring unit is not available and to determine how plant operators control the 
temperature.  

The current study collected only one type of data for one single mix. A solid conclusion cannot be 
made based on one sample calculation. However, this study helps bring this issue to the attention of 
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the intellectual and professional community. Several HMA mixes with varying aggregate sizes, mix 
proportions, and other properties (coarse, fine, etc.) are recommended for future study. 

7.3.3 Computational Modeling  
It is impossible to see what is going on inside the drum while it is operating. However, temperature 
probes can be embedded inside the drum, and a temperature reading can be obtained from outside 
the drum. Generally, it is possible to measure the input (moisture content) and output (mix 
temperature) parameters. In some cases, not all the outputs (such as virgin aggregate temperature) 
can be observed. For this kind of situation, computational predictive modeling such as artificial neural 
network (ANN) or genetic algorithm (GA) can be used. Those models provide output based on “data 
training.” However, a significant amount of data is required in order to use those ANN or GA. The 
computational modeling can be done in parallel with extensive data collection from the plants.  

7.3.4 Numerical Analysis  
Finally, numerical analysis such as computational fluid dynamics (CFD) and discrete element method 
(DEM) modeling can be used to simulate the heating and drying process. Limited study has been 
done in this field, but recycled materials have not been used in the simulation. Numerical analysis 
helps provide an understanding of the complete heat transfer phenomenon in drying and heating 
materials.  

7.3.5 Laboratory Study 
Damage or burning caused by the superheated virgin aggregate to the virgin asphalt binder, aged 
binder coating on the RAP/RAS, and to the HMA is unknown. Further study can be done in the 
laboratory by heating virgin aggregates to a superheated temperature and then mixing them with 
virgin binder and/or with RAP/RAS. Such a study would supplement our understanding of the adverse 
effect of superheated virgin aggregates in the plant.  
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